Polychromatic Supplemental Lighting from underneath Canopy Is More Effective to Enhance Tomato Plant Development by Improving Leaf Photosynthesis and Stomatal Regulation

نویسندگان

  • Yu Song
  • Chengyao Jiang
  • Lihong Gao
چکیده

Light insufficient stress caused by canopy interception and mutual shading is a major factor limiting plant growth and development in intensive crop cultivation. Supplemental lighting can be used to give light to the lower canopy leaves and is considered to be an effective method to cope with low irradiation stress. Leaf photosynthesis, stomatal regulation, and plant growth and development of young tomato plants were examined to estimate the effects of supplemental lighting with various composite spectra and different light orientations. Light-emitting diodes (LEDs) of polychromatic light quality, red + blue (R/B), white + red + blue (W/R/B), white + red + far-red (W/R/FR), and white + blue (W/B) were assembled from the underneath canopy or from the inner canopy as supplemental lighting resources. The results showed that the use of supplemental lighting significantly increased the photosynthetic efficiency, and reduced stomatal closure while promoting plant growth. Among all supplemental lighting treatments, the W/R/B and W/B from the underneath canopy had best performance. The different photosynthetic performances among the supplemental lighting treatments are resulted from variations in CO2 utilization. The enhanced blue light fraction in the W/R/B and W/B could better stimulate stomatal opening and promote photosynthetic electron transport activity, thus better improving photosynthetic rate. Compared with the inner canopy treatment, the supplemental lighting from the underneath canopy could better enhance the carbon dioxide assimilation efficiency and excessive energy dissipation, leading to an improved photosynthetic performance. Stomatal morphology was highly correlated to leaf photosynthesis and plant development, and should thus be an important determinant for the photosynthesis and the growth of greenhouse tomatoes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nighttime Supplemental LED Inter-lighting Improves Growth and Yield of Single-Truss Tomatoes by Enhancing Photosynthesis in Both Winter and Summer

Greenhouses with sophisticated environmental control systems, or so-called plant factories with solar light, enable growers to achieve high yields of produce with desirable qualities. In a greenhouse crop with high planting density, low photosynthetic photon flux density (PPFD) at the lower leaves tends to limit plant growth, especially in the winter when the solar altitude and PPFD at the cano...

متن کامل

Canopy photosynthesis, evapotranspiration, leaf nitrogen, and transcription profiles of maize in response to CO2 enrichment

The effects of CO2 enrichment on the growth and physiology of maize were investigated at the molecular, biochemical, leaf, and canopy levels. Maize plants were grown in sunlit soil–plant–atmosphere research (SPAR) chambers at ambient (370 lmol mol ) or elevated (750 lmol mol ) atmospheric carbon dioxide concentration (Ca) under wellwatered and fertilized conditions. Canopy gas exchange rates an...

متن کامل

Stomatal Density as a Selection Criterion for Developing Tea Varieties with High Physiological Efficiency

Stomata, the small opening in leaf connecting plant with atmosphere, play pivotal roles in global water and carbon cycles. Stomata regulate the two key important physiological functions viz. photosynthesis and transpiration and thus are crucial for performance of crop species in changing climatic conditions. Although environmental factors influence the density and size of stomata, the genetic c...

متن کامل

Understanding stomatal conductance responses to long-term environmental changes: a Bayesian framework that combines patterns and processes.

When stomata are open, the trade-off between water loss through transpiration and CO2 uptake via photosynthesis is a result of the evolutionary history of land plants from green algae. To supply the up to 1000-fold higher flux of water leaving the leaf compared with CO2 molecules entering the leaf during leaf gas exchange (Nobel 2009), plant hydraulics has evolved to be highly efficient. The in...

متن کامل

Supplemental Upward Lighting from Underneath to Obtain Higher Marketable Lettuce (Lactuca sativa) Leaf Fresh Weight by Retarding Senescence of Outer Leaves

Recently, the so-called "plant factory with artificial lighting" (PFAL) approach has been developed to provide safe and steady food production. Although PFALs can produce high-yielding and high-quality plants, the high plant density in these systems accelerates leaf senescence in the bottom (or outer) leaves owing to shading by the upper (or inner) leaves and by neighboring plants. This decreas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016